880022 :Data Mining for Business and Governance (CSAI/HAIT/DJ/NMD)


Voertaal Engels
Werkvorm: Lectures and hands-on sessions (Collegerooster)
Tentamenvorm: Midterm and final exam (Tentamenrooster)
Studielast:6 ECTS credits
Inschrijving:Enrollment before start lectures
Blackboard informatieLink to Blackboard (Als u de melding 'Guest are not allowed in this course' krijgt, dient u nog bij Blackboard in te loggen)


dr. W. Huijbers (coordinator (unit 1))

dr. M. Atzm├╝ller (coordinator (unit 3))

C.D. Emmery MSc

Doel van de cursus

After the course the student will be able to:
  1. Indicate important components and tools in the data science ecosystem.
  2. Describe and explain the elementary principles of data mining and their application in different contexts and domains.
  3. Apply standard data preprocessing and data mining algorithms.
  4. Analyze and evaluate elementary data mining experiments.
  5. Draw conclusions on the potential and limitations of data, algorithms, and models.

Inhoud van de cursus

Data Science methods are becoming the main tools for acquiring information both in business context and in scientific research. The course offers a thorough introduction in the use of data mining for analysis of various domains. Upon completion of the course, students will have acquired the skills necessary to apply data mining to extract information from large data sets and transform it into an understandable structure. In addition, students will be familiarized with advanced topics, including classification, clustering pattern mining and graph analyses. The perspective of the course is application-oriented and serves to provide students with the knowledge and experience that is in line with the current demand for skilled data scientists. 


Data Mining for Business and Governance will be accessible for all students (no technical background required). During the course, students will complete mandatory assignments in which they will train their basic data mining skills in the domain of social media and behaviour. The experiments and assignments will be performed with open-source data mining software (jupyter, pandas, and scikit-learn). There will be one midterm exam to ensure that students keep on track with the course contents. The course is completed with a written exam.

 This course is compulsory for students of the track Data Science: Business and Governance (2016-2017). Passing the course is a prerequisite for Master thesis/Data Science in Action in the DSBG track.

Verplichte literatuur

  1. Research papers, see Blackboard.

Gewenste voorkennis


Vereiste voorkennis


Verplicht voor

  • Data Science: Business and Governance ( 2015, 2016, 2017 )
  • Data Science: Business and Governance (voorjaar) ( 2017 )

Mogelijk interessant voor